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Darcy’s law extension for 2-phase flow

“…the obvious futility of attempting to solve 
these [Navier-Stokes] equations for 
multiply connected passages composed of 
the pores of a porous medium has 
necessitated a direct empirical solution of 
the problem.”

M.Muskat and M.Meres The flow of heterogeneous fluids 
through porous media Physics, 1936



Pore-network model
“The use of high speed 

computers, such as Illiac, will 
make possible tests of 
network model that I could not 
even consider…”

I.Fatt, The network model of porous media
Transactions AIME 1951

Illiac-I: 
2,800 vacuum tubes 
weight ~5 tons; 
5k main memory 
64k drum memory



New opportunities

3D reconstruction of the 
pore space

• X-ray computer 
tomography (CT): 
micron-scale resolution

• Focused-ion-beam (FIB): 
nanometer scale

• Computing power

Micro CT and SEM: Liviu Tomutsa, LBNL

Frio sandstone

Diatomite



Outline

• Maximal Inscribed Spheres method
– Capillary equilibrium

– Verification

• Solving flow equations
– The method of artificial compressibility
– The curse of dimensionality: domain 

partitioning

• Relative permeability curves



Maximal inscribed spheres: 
fluid distribution

Pc =pnw – pw = 2σ/r
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Maximal inscribed spheres: 
fluid distribution

Pc =pnw – pw = 2σ/r



Maximal inscribed spheres

• Assumptions
– Capillary equilibrium

– Disperse saturation is negligible

• Implementation
– Input: 3d binary image of the pore space
– 3D maximal radii table

– Connectivity: cluster search
– Large input data sets



Maximal inscribed spheres: 
verification
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The method of artificial compressibility

Computational parameters: 
iteration parameter
artificial density 
artificial compressibility

A.Chorin: Journal of Computational Physics 1967
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Example: Stokes flow

• Convergence is critically 
important for estimation of 
Darcy velocity

• A severe criterion must be 
imposed
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“The Curse of Dimensionality”
• Good news:

– High-resolution images →
accurate discretization

• Bad news:
– 5mm×5mm×5mm at 5 

micron resolution = 1GB

– Millions of grid cells →
enormous volume of 
computations



Slicing the whole sample into layers

Workaround: 
Processing the whole 
image by parts



Evaluation of relative permeability curves

Wetting fluid Non-wetting fluid

MIS-calculated fluid distribution



Relative permeability evalculation

Wyckoff & Botset 1936MIS-calculations
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Summary and conclusions 
MIS-calculations + FD simulations: 

• Benefits: 
– Partitioning of a large sample → distributed computations
– Analysis of the digital image bypassing pore network extraction
– Large high-resolution images can be processed on a desktop 

computer

• Weaknesses
– Severe criterion for convergence
– “The curse of dimensionality”

• A promising approach for routine applications
• Generalizations

– Modeling of the impact of mechanical deformation, 
mineralization, etc
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